

Better prescribing. Better health.

Two Decades of ADHD Diagnosis Trends in British Columbia: A Population-Based Study

Zishan Cui, Andrew Li, Ken Bassett, Anshula Ambasta, Greg Carney, Wade Thompson, Colin Dormuth

Therapeutics Initiative, Victoria, BC, Canada

Objectives

Quantify ADHD incidence and prevalence

• Examine the impact of **DSM-5 diagnostic**

pandemic on the incident ADHD diagnoses.

criteria changes and the COVID-19

(preschool to young adults).

Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada

Background

- Rising ADHD Diagnoses: Most studies have focused on prevalence, which may mask emerging diagnostic trends for a chronic condition like ADHD.
- **Diagnostic Criteria Change**: DSM-5 (2013) introduced "subtle but important" changes, but their impact remains unquantified.
- Pandemic effects: COVID-related stressors may have contributed to the rising rates of ADHD diagnoses, yet its long-term vs. short-term effects remain unclear.
- Data Gap: No population-level ADHD data in British Columbia (BC) for over a decade.
- Importance: Understanding age- and sex-specific shifts in ADHD diagnoses can help anticipate future health system needs.

Methods

Design

Population-based retrospective cohort study

Data Sources

BC administrative databases

- Physician services
- Community pharmacy dispensations
- Hospital admissions
- Emergency department visits

Outcome

ADHD diagnosis

- ≥1 ADHD-specific prescription including
 Methylphenidate,
 Lisdexamfetamin,
 Dextroamphetamine,
 Mixed amphetamine salts
 Atomoxetine
 Guanfacine, or
- ≥1 ADHD hospitalization with ICD-10 F90,
- ≥1 ADHD physician visit with ICD-9 314 and another ADHD visit, ADHD prescription, or ADHD hospitalization within one year

Participants

BC residents aged 3 to 29 years between 2003 and 2023

Stratified by

Sex: male and female

Age groups:

- Preschool: 3–5 years;
- Elementary school: 6–12 years;
- High school: 13–17 years;
- Young adults: 18–29 years.

Statistical Analysis

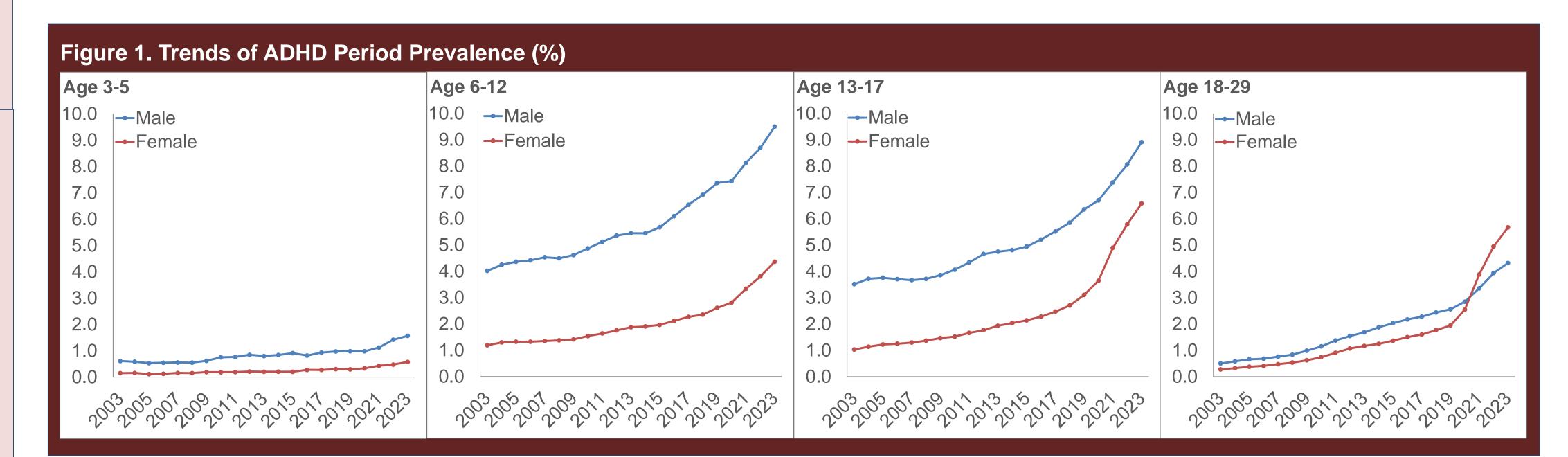
Interrupted time series analyses

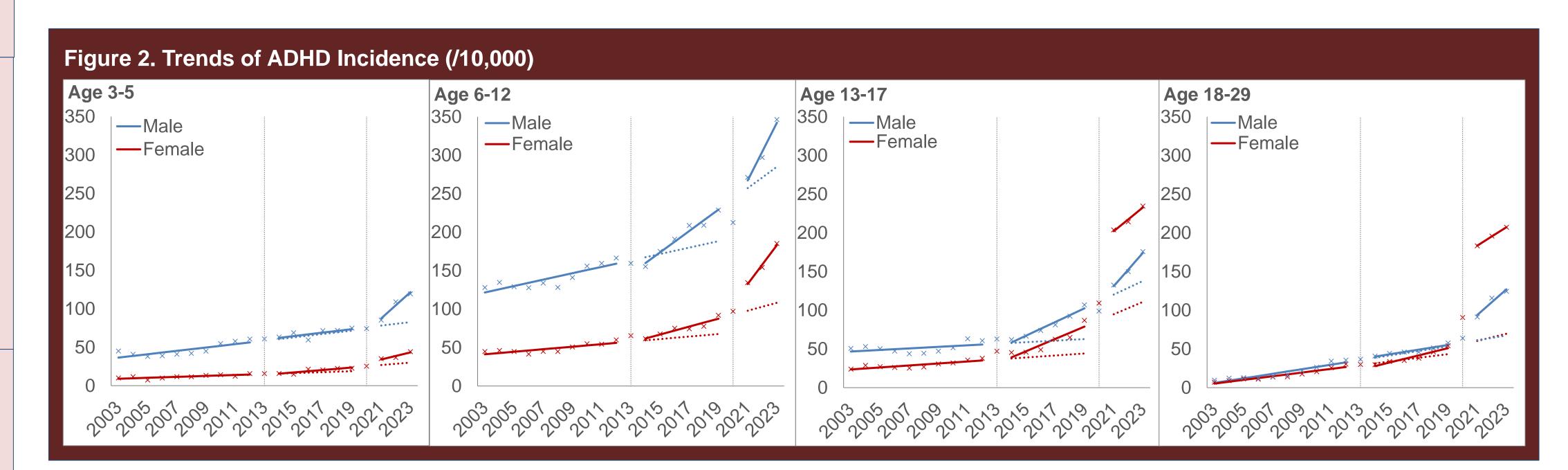
$$Y_t = \beta_0 + \beta_1 \cdot \text{time}$$

 $+\beta_2 \cdot I_{2014} + \beta_3 \cdot \text{time} \cdot I_{2014}$
 $+\beta_4 \cdot I_{2021} + \beta_5 \cdot \text{time} \cdot I_{2021}$

- β_0 : Baseline intercept;
- β_1 : Baseline trend;
- β_2 : Immediate level change following the introduction of DSM-5 in 2013;
- β_3 : Trend change post-DSM-5;
- β_4 : Immediate level change following the COVID-19 pandemic in 2020;

 β_5 : Trend change post-COVID.


Results


Table 1. ADHD Prevalence and Incidence over the study period

Population	Prevalence 3,655,001	Incidence 2,743,914
Total cases	232,480 (6.4%)	185,138 (675/10,000)
Male	142,267 (7.7%)	110,874 (805/10,000)
3-5	9,823 (1.7%)	9,436 (167/10,000)
6-12	76,895 (10.2%)	58,188 (885/10,000)
13-17	58,442 (7.8%)	17,429 (296/10,000)
18-29	58,821 (4.4%)	25,821 (286/10,000)
Female	90,213 (5.0%)	74,264 (543/10,000)
3-5	2,798 (0.5%)	2,683 (50/10,000)
6-12	28,917 (4.1%)	23,665 (372/10,000)
13-17	30,336 (4.3%)	16,026 (269/10,000)
18-29	53,351 (4.1%)	31,890 (341/10,000)

Conclusions

- Rising ADHD Diagnoses: Prevalence and incidence of ADHD diagnoses increased across all age and sex groups in BC from 2003 to 2023.
- Impact of DSM-5: Accelerated ADHD diagnoses, particularly in school-aged children and adolescents.
- Post-COVID Surge: Incident ADHD diagnoses spiked in adolescent girls and young women, surpassing same-aged males and shifting the peak age of female diagnoses to high school years.
- School Entry & Exit Patterns: ADHD
 Diagnoses among males increased at
 elementary school entry and declined after
 high school completion, raising concerns
 about potential over-identification.

Reference

- 1. Epstein, J. N., et al. Changes in the definition of ADHD in DSM-5: Subtle but important. Neuropsychiatry (2013).
- 2. Espinet, S. D., et al. A Review of Canadian Diagnosed ADHD Prevalence and Incidence Estimates Published in the Past Decade. Brain Sciences (2022).
- 3. Rogers, M. A. & MacLean, J. ADHD Symptoms Increased During the Covid-19 Pandemic: A Meta-Analysis. J Atten Disord (2023).
- 4. Butt, D. A., et al. Prevalence and Incidence Trends of Attention Deficit/Hyperactivity Disorder in Children and Youth Aged 1-24 Years in Ontario, Canada: A Validation Study of Health Administrative Data Algorithms. Canadian Journal of Psychiatry (2024).
- 5. Antoniou, T. et al. Impact of COVID-19 pandemic on prescription stimulant use among children and youth: a population-based study. Eur Child Adolesc Psychiatry, (2024).

Declarations

- CD is funded by grant to UBC from the BC Ministry of Health. ZC is supported by CIHR postdoctoral fellowship.
- Therapeutics Initiative members do NOT accept any payment from pharmaceutical companies.

 All inferences, opinions, and conclusions drawn in this material are those of the author(s), and do NOT reflect the opinions or policies of the Data Steward(s).